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F.C.E., Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
email: rleiva@fcemail.uncu.edu.ar

Miguel Fonseca
Center of Mathematics and Applications, Faculty of Sciences and Technology

NOVA University of Lisbon
Monte da Caparica, 2829-516 Caparica, Portugal

email: fmig@fct.unl.pt

Abstract

The article addresses the best unbiased estimators of doubly exchangeable covariance structure
for three-level data, an extension of the block compound symmetry covariance structure. Un-
der multivariate normality, the free-coordinate approach is used to obtain linear and quadratic
estimates for the model parameters that are sufficient, complete, unbiased and consistent. Data
from a clinical study is analyzed to illustrate the application of the obtained results.

Keywords Best unbiased estimator, doubly exchangeable covariance structure, three-level
multivariate data, coordinate free approach, unstructured mean vector.

2010 Mathematics Subject Classification 62H12, 62J10, 62F10

1



1 Introduction

Multi-level multivariate observations are becoming increasingly visible across all fields of biomedical,

medical and engineering among many others these days. This article deals with the estimation and

best unbiased estimators of doubly exchangeable covariance structure (defined in Section 2) for

three-level multivariate observations (m dimensional observation vector repeatedly measured at u

locations and over v time points). Consider an example from a clinical trial of glaucoma. Glaucoma

is a group of eye diseases that lead to the damage of the optic nerve. Over the years, numerous

investigators have studied the characteristics of individuals who have glaucoma. Those studies

identified several factors such as intraocular pressure (IOP), and central corneal thickness (CCT),

useful in the diagnosis of glaucoma. Measurements of intraocular pressure (IOP) and central corneal

thickness (CCT) are obtained from both the eyes (sites), each at three time points at an interval of

three months for 30 patients. It is clear that for this data set m = 2, u = 2 and v = 3. This example

will be used later in Section 5 for an illustrative purpose. Our main intention of the analysis of this

data set is to illustrate the proposed methods rather than giving any insight into the data set itself.

For this data set the unstructured variance-covariance matrix is (12 × 12)−dimensional, and

therefore the number of unknown parameters in the unstructured variance-covariance matrix is 78.

As a result, estimation of this unstructured variance-covariance matrix is not possible for small

sample situations. Therefore, an assumption of doubly exchangeable (DE) covariance structure is

necessary for small sample situation. DE covariance structure provides a substantial reduction in

the number of unknown covariance parameters to just 9, and thus, may help in providing the correct

information about the true association of the three-level multivariate data with small samples. Roy

and Leiva (2007) and Leiva and Roy (2011, 2012) used this data set in their studies, and assumed

that the data have DE covariance structure. The structure is simply implied by the organization

(design in broad sense) of the experiment, and need not be tested all the times.

For three-level multivariate observations both u and v must be greater than 1; i.e., both u > 1

and v > 1. If either u = 1 or v = 1, the data become two-level or doubly multivariate with blocked

compound symmetry (BCS) covariance structure, and finally if both u = 1 and v = 1, the data

just become classical multivariate data with unstructured variance-covariance matrix. If m = 1

with either u = 1 or v = 1, the data also become classical multivariate data, but with compound

symmetry covariance structure.

Doubly exchangeable covariance structure was first studied by Roy and Leiva (2007) in the

context of classification rules for three-level multivariate data. Later these two authors wrote a
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series of articles on classification rules for three-level multivariate data with different covariance

structures and with different mean vectors: among them Leiva and Roy (2009, 2011, 2012) are

worth mentioning. Coelho and Roy (2014) studied hypothesis testing problem of this DE covariance

structure. Roy and Fonseca (2012) studied this DE covariance structure while developing general

linear model for three-level multivariate data with error vectors having DE covariance structure.

They derived unbiased estimators of the component matrices of the orthogonally transformed DE

covariance structure for testing the intercept and slope parameters of the general linear model using

parametric bootstrap as well as multivariate Satterthwaite approximation. Recently, Roy (2014)

proposed a two-stage principal component analysis of interval data using BCS and DE covariance

structures. To derive the principal components of the interval data Roy (2014) obtained the unbiased

estimates of BCS and DE covariance structures by considering the interval data as two-level and

three-level multivariate data respectively. One might ask at this point whether these unbiased

estimates are reasonably good or not. Optimal estimation for two-level multivariate data with

unstructured mean vector (fixed parameters) and with BCS covariance structure set-up was studied

by Roy et al. (2016). Recently, Kozio l et al. (2015) studied the same problem with structured mean

vector, where mean vector remains constant over sites, i.e., 1u ⊗µ with µ = (µ1, µ2, . . . , µm) ∈ Rm.

In this article, optimal unbiased estimators for three-level multivariate data with unstructured mean

vector and with DE covariance structure will be constructed.

The assumption of double exchangeability reduces the number of unknown parameters consid-

erably, thus allows more dependable or reliable parameter estimates. This covariance structure can

capture the data arrangement or data pattern in a three-level multivariate data, and thus may of-

fer more information about the true association of the data. One of the many advantages of this

covariance structure is that the repeated measurements at any level need not be of equally spaced.

The unstructured variance-covariance matrix has vum(vum+ 1)/2 unknown parameters, which can

be large for arbitrary values of v, u or m. In order to reduce the number of unknown parameters, it

is then essential to assume some appropriate structure on the variance-covariance matrix. One may

assume a DE covariance structure in this situation, where the data is multivariate in three levels.

DE covariance structure has only 3m(m + 1)/2 unknown parameters. This number does not even

depend on the number of locations or sites u and the number of time points v. The use of DE

covariance structure provides a better insight into the three-level data structure. The problem of

interest in this paper is to find optimal estimators of DE covariance structure. To the best of the

authors’ knowledge, none of the previous studies have considered the estimation properties of the
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DE covariance structure.

This article derives the unbiased estimators of the unstructured mean vector and the DE covari-

ance structure, and addresses the issue of optimal properties of these unbiased estimators that is

motivated by the example of the clinical trial of glaucoma that is discussed earlier in the Introduc-

tion. A characterization of best linear unbiased estimator (BLUE) given by Zmyślony (1978) and

completeness in Zmyślony (1980) are used to derive the optimal properties of unbiased estimators of

the DE covariance matrix. The derivation and computation of these estimators are developed using

the coordinate free approach
(
see Kruskal (1968) and Drygas (1970)

)
.

2 Doubly exchangeable covariance structure

The (vum× vum)−dimensional DE covariance structure is defined as

Γ =


Σ0 Σ1 . . . Σ1
...

. . .
...

...
. . .

...
Σ1 Σ1 . . . Σ0


= Iv ⊗ (Σ0 −Σ1) + Jv ⊗Σ1, (2.1)

where Iv is the v × v identity matrix, 1v is a v × 1 vector of ones, Jv = 1v1
′
v, ⊗ represents the

Kronecker product and

Σ0 = Iu ⊗ (Γ0 − Γ1) + Ju ⊗ Γ1, and

Σ1 = Ju ⊗ Γ2.

We assume Σ0 is a positive definite symmetric um× um matrix, and Σ1 is a symmetric um× um

matrix, and Σ0 − Σ1 and Σ0 + (v − 1)Σ1 are positive definite matrices, so that the vum × vum

matrix Γ is positive definite
(
for a proof, see Lemma 2.1 in Roy and Leiva (2011)

)
.

We see that the matrix Γ is exchangeable with matrix parameters Σ0 and Σ1, and the matrix

Σ0 is exchangeable with the matrix parameters Γ0 and Γ1. Because of this doubly exchangeable

nature of this covariance structure Γ, it is called doubly exchangeable covariance structure, and can

equivalently be written as follows

Γ = Iv ⊗Σ0 + (Jv − Iv)⊗Σ1, (2.2)

We can write this doubly exchangeable covariance structure Γ in terms of Γ0, Γ1 and Γ2 as

Γ = Iv ⊗ Iu ⊗ (Γ0 − Γ1) + Iv ⊗ Ju ⊗ (Γ1 − Γ2) + Jv ⊗ Ju ⊗ Γ2,
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which can equivalently be written as

Γ = Iv ⊗ Iu ⊗ Γ0 + Iv ⊗ (Ju − Iu)⊗ Γ1 + (Jv − Iv)⊗ Ju ⊗ Γ2. (2.3)

This last form (2.3) will be used to build orthogonal basis with respect to trace of inner product

base for components of matrix Γ.

We assume Γ0 is a positive definite symmetric m×m matrix, Γ1 and Γ2 are a symmetric m×m

matrices, and Γ0 − Γ1, Γ0 + (u − 1)Γ1 − uΓ2, Γ0 + (u − 1)Γ1 + (v − 1)uΓ2 are positive definite

matrices, so that the vum × vum matrix Γ is positive definite
(
for a proof, see Lemma 3.1 in Roy

and Fonseca (2012)
)
. The m×m block diagonals Γ0 in Γ represent the variance-covariance matrix

of the m response variables at any given time point and at any given site, whereas the m×m block

off diagonals Γ1 in Γ represent the covariance matrix of the m response variables at any given time

point and between any two sites. The m ×m block off diagonals Γ2 in Γ represent the covariance

matrix of the m response variables between any two time points. We assume Γ0 is constant for all

time points and sites, Γ1 is same between any two sites and for all time points and Γ2 is assumed to

be the same for any pair of time points, irrespective of the same site or between any two sites. We

derive the unbiased estimates of µ and Γ in the following section.

3 Unbiased estimates of µ and Γ

Let yr,ts be a m-variate vector of measurements on the rth individual at the tth time point and

at the sth site; r = 1, . . . , n, t = 1, . . . , v, s = 1, . . . , u. The n individuals are all independent.

Let yr = (y′r,11, . . . ,y
′
r,vu)′ be the vum-variate vector of all measurements corresponding to the

rth individual. Finally, let y1,y2, . . . ,yn be a random sample of size n drawn from the population

Nvum (µ,Γ), where µ ∈ Rvum with µ = (µ′11, . . . ,µ
′
vu)′ and Γ is assumed to be a vum×vum positive

definite matrix.

Theorem 1. Under this set up unbiased estimators of µ, Γ0, Γ1 and Γ2 are respectively

µ̃ =
1

n

n∑
r=1

yr, (3.4)

Γ̃0 =
1

(n− 1)vu
C0 =

1

(n− 1)vu

v∑
t=1

u∑
s=1

n∑
r=1

(
yr,ts − y•,ts

) (
yr,ts − y•,ts

)′
,

Γ̃1 =
1

(n− 1)vu (u− 1)
C1 =

1

(n− 1)vu (u− 1)

v∑
t=1

u∑
s=1

u∑
s∗=1

s 6=s∗

n∑
r=1

(
yr,ts∗ − y•,ts∗

) (
yr,ts − y•,ts

)′
,
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and

Γ̃2 =
1

(n− 1)v (v − 1)u2
C2 =

1

(n− 1)v (v − 1)u2

v∑
t=1

u∑
s=1

v∑
t6=t∗=1

u∑
s∗=1

n∑
r=1

(
yr,t∗s∗ − y•,t∗s∗

) (
yr,ts − y•,ts

)′
,

where y•,ts = 1
n

∑n
r=1 yr,ts, for t = 1, . . . , v and s = 1, . . . , u.

Proof : Clearly, y = (y′•,11, . . . ,y
′
•,vu)′ ∼ Nvum

(
µ, 1nΓ

)
with µ = (µ′11, . . . ,µ

′
vu)′ and Γ is

defined in (2.1). The independence of y1,y2, . . . ,yn and the doubly exchangeability of Γ give

cov
[
yr,ts;yr,t∗s∗

]
= E

[(
yr,ts − µts

) (
yr,t∗s∗ − µt∗s∗

)′]
=


Γ0 if t = t∗, s = s∗

Γ1 if t = t∗, s 6= s∗

Γ2 if t 6= t∗,

and

cov
[
y•,ts;y•,t∗s∗

]
= E

[(
y•,ts − µts

) (
y•,t∗s∗ − µt∗s∗

)′]
=


1
nΓ0 if t = t∗, s = s∗
1
nΓ1 if t = t∗, s 6= s∗
1
nΓ2 if t 6= t∗.

Let

C0 =
v∑

t=1

u∑
s=1

n∑
r=1

(
yr,ts − y•,ts

) (
yr,ts − y•,ts

)′
(3.5)

=
v∑

t=1

u∑
s=1

n∑
r=1

[(
yr,ts − µts

)
−
(
y•,ts − µts

)] [(
yr,ts − µts

)
−
(
y•,ts − µts

)]′
=

v∑
t=1

u∑
s=1

n∑
r=1

(
yr,ts − µts

) (
yr,ts − µts

)′− n

v∑
t=1

u∑
s=1

(
y•,ts − µts

) (
y•,ts − µts

)′
,

then

E [C0] =
v∑

t=1

u∑
s=1

n∑
r=1

E
[(
yr,ts − µts

) (
yr,ts − µts

)′]
−n

v∑
t=1

u∑
s=1

E
[(
y•,ts − µts

) (
y•,ts − µts

)′]
= nvuΓ0 − vuΓ0 = (n− 1) vuΓ0.

Similarly, let

C1 =

v∑
t=1

u∑
s=1

u∑
s 6=s∗=1

n∑
r=1

(
yr,ts∗ − y•,ts∗

) (
yr,ts − y•,ts

)′
(3.6)

=
v∑

t=1

u∑
s=1

u∑
s 6=s∗=1

n∑
r=1

(
yr,ts∗ − µts∗

) (
yr,ts − µts

)′
n

v∑
t=1

u∑
s=1

u∑
s 6=s∗=1

(
y•,ts∗ − µts∗

) (
y•,ts − µts

)′
,
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and so

E [C1] = (n− 1) vu (u− 1) Γ1.

Finally, let

C2 =
v∑

t=1

u∑
s=1

v∑
t6=t∗=1

u∑
s∗=1

n∑
r=1

(
yr,t∗s∗ − y•,t∗s∗

) (
yr,ts − y•,ts

)′
(3.7)

=

v∑
t=1

u∑
s=1

v∑
t6=t∗=1

u∑
s∗=1

n∑
r=1

(
yr,t∗s∗ − µt∗s∗

) (
yr,ts − µts

)′
n

v∑
t=1

u∑
s=1

v∑
t6=t∗=1

u∑
s∗=1

(
y•,t∗s∗ − µt∗s∗

) (
y•,ts − µts

)′
and so

E [C2] = (n− 1) v (v − 1)u2Γ2.

Therefore, unbiased estimators of Γ0, Γ1 and Γ2 are

Γ̃0 =
1

(n− 1) vu
C0, (3.8)

Γ̃1 =
1

(n− 1) vu (u− 1)
C1 (3.9)

and

Γ̃2 =
1

(n− 1) v (v − 1)u2
C2, (3.10)

where C0, C1 and C2 are given by (3.5) , (3.6) and (3.7) , respectively. Consequently,

Γ̃ = Iv ⊗ Iu ⊗ (Γ̃0 − Γ̃1) + Iv ⊗ Ju ⊗ (Γ̃1 − Γ̃2) + Jv ⊗ Ju ⊗ Γ̃2

is an unbiased estimator of Γ. The optimal properties of the unbiased estimators are discussed in

the following section.

4 Best unbiased estimators

In this section, optimal properties of unbiased estimators for mean vector and the covariance matrix

Γ are obtained. Let the data matrix be Y ′
vum×n

= (y1,y2, . . . ,yn). Thus, the following column vector

y
nvum×1

= vec( Y ′
vum×n

) ∼ N
(
(1n ⊗ Ivum)µ, In ⊗ Γvum

)
.

This means that n independent random column vectors are identically distributed with (vum ×

vum)−dimensional variance-covariance matrix

Γ = Iv ⊗ Iu ⊗ Γ0 + Iv ⊗ (Ju − Iu)⊗ Γ1 + (Jv − Iv)⊗ Ju ⊗ Γ2.
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Define the projection matrix P as follows:

P =
1

n
Jn ⊗ Ivum, (4.11)

and V = In ⊗ Γvum is the covariance matrix of y. It is clear that P is an orthogonal projector on

the subspace of the mean vector of y. If In⊗ Ivum ∈ ϑ = sp{V }, from (Gnot et al., 1980) it follows

that Py is the best linear unbiased estimator (BLUE) if and only if P commutes with all covariance

matrices V . Therefore, we have the following results.

Result 1. The projection matrix P commutes with the covariance matrix V , i.e., PV = V P ,

where V = In ⊗ Γ, the covariance matrix of y.

Proof. Now,

P = (1n ⊗ Ivum)(1n ⊗ Ivum)+

= (1n ⊗ Ivum)

(
1

n
1′n ⊗ Ivum

)
=

1

n
Jn ⊗ Ivum.

Note that ( 1
nJn ⊗ Ivum)(In ⊗ Γ) = 1

nJn ⊗ Γ is symmetric. It implies that the matrix P commutes

with the covariance matrix of y.

Lemma 1. Let ϑ denote the subspace spanned by V , i.e., ϑ = sp{V }. Then, ϑ is a quadratic

subspace. That is, ϑ is a linear space and if V ∈ ϑ then V 2 ∈ ϑ
(
see Seely (1971) for the definition

)
.

Proof. It is sufficient to prove that Γ2 ∈ sp{Γ}. From the structure of the covariance matrix V it

is clear that sp{V } is a quadratic subspace if and only if sp{Γ} is a quadratic subspace. Using the

definition (2.1) of Γ after simple algebraic calculations one can find that

Γ2 = Iv ⊗ (Σ0 −Σ1)
2 + Jv ⊗ [Σ1Σ0 + Σ0Σ1 + (v − 2)Σ2

1]. (4.12)

By defining the component matrices Σ∗0 = Σ2
0 + (v− 1)Σ2

1 and Σ∗1 = Σ1Σ0 + Σ0Σ1 + (v− 2)Σ2
1, Γ2

in (4.12) can be rewritten as

Γ2 = Iv ⊗ (Σ∗0 −Σ∗1) + Jv ⊗Σ∗1.

This proves that sp{Γ} = sp{Γ2}, and it implies sp{V } is a quadratic subspace.
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Now, because orthogonal projector on the space generated by the mean vector commutes with all

covariances matrices, there exists BLUE for each estimable function of mean. Moreover, BLUE are

least squares estimators (LSE), in view of Result 1. Thus, µ̃ is the unique solution of the following

normal equation

(1n ⊗ Ivum)′(1n ⊗ Ivum)µ = (1n ⊗ Ivum)′y or

nIvumµ = [Ivum, Ivum, . . . , Ivum]y,

which means that

µ̃ =
1

n

n∑
r=1

yr.

Let M = In⊗Iv⊗Iu⊗Im−P . So, M is idempotent. Now, since PV = V P , and ϑ is a quadratic

space, MϑM = Mϑ is also a quadratic space. We now construct a base for this quadratic subspace

ϑ. We define

Aii = Eii and Aij = Eij +Eji, for i < j; and j = 1, . . . ,m,

as a base for symmetric matrices Γ. The (m×m)−dimensional matrices Eij has 1 only at the ijth

element, and 0 at all other elements. Then it is clear that the base for diagonal matrices of the form

In ⊗ Iv ⊗ Iu ⊗ Γ0 is constituted by matrices

K
(0)
ij = In ⊗ Iv ⊗ Iu ⊗Aij , for i ≤ j, j = 1, . . . ,m, (4.13)

the base for matrices of the form In ⊗ Iv ⊗ (Ju − Iu)⊗ Γ1 is constituted by matrices

K
(1)
ij = In ⊗ Iv ⊗ (Ju − Iu)⊗Aij , for i ≤ j, j = 1, . . . ,m

and the base for matrices of the form In ⊗ (Jv − Iv)⊗ Ju ⊗ Γ2 is constituted by matrices

K
(2)
ij = In ⊗ (Jv − Iv)⊗ Ju ⊗Aij , for i ≤ j, j = 1, . . . ,m.

It is clear from (2.2) that above base is orthogonal with respect to trace of inner product.

Result 2. The complete and minimal sufficient statistics for the mean vector and the variance-

covariance matrix are

(1′n ⊗ Ivum)y (4.14)

and y′MK
(l)
ij My, l = 0, 1, 2, (4.15)

where M = Invum − P and P is given in (4.11), see Fonseca et al. (2010), Seely (1977) and

Zmyślony (1980).
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Now we prove that Γ̃vum is the best quadratic unbiased estimator (BQUE) for Γ. Since P

commutes with the covariance matrix of y, for each parameter of covariance there exists BQUE if

and only if

sp{MVM}, where M = Invum − P ,

is a quadratic subspace
(
see Zmyślony (1976) and Gnot et al. (1976, 1977)

)
or Jordan alge-

bra
(
see Jordan et al. (1934)

)
, where V stands for covariance matrix of y. It is clear that

if sp{V } is a quadratic subspace and if for each Σ ∈ sp{V } commutativity PΣ = ΣP holds,

then sp{MVM} = sp{MV } is also a quadratic subspace. According to the coordinate free ap-

proach, the expectation of Myy′M can be written as a linear combination of vectors vec(MK
(0)
ij ),

vec(MK
(1)
ij ) and vec(MK

(2)
ij ) with unknown coefficients σ

(0)
ij , σ

(1)
ij and σ

(2)
ij , respectively. Note

also that identity covariance operator of yy′ belongs to sp{cov(yy′)}. It implies that the ordi-

nary best quadratic estimators are least square estimators for corresponding parameters σ
(0)
ij , σ

(1)
ij

and σ
(2)
ij , and they are calculated independently. Defining m(m+1)

2 column vectors σ(l) = [σ
(l)
ij ] for

i ≤ j = 1, . . . ,m; l = 0, 1, 2, we see that the normal equations have the following block diagonal

structure a 0 0
0 b 0
0 0 c

⊗ I m(m+1)
2

σ(0)

σ(1)

σ(2)

 =

r(0)r(1)

r(2)

, (4.16)

where for i ≤ j = 1, . . . ,m; a = tr
(
M(K

(0)
ij )2

)
, b = tr

(
M(K

(1)
ij )2

)
and c = tr

(
M(K

(2)
ij )2

)
, while the

m(m+1)
2 × 1 vector r(l) = 1

2−δij

[
r′K

(l)
ij r
]

for l = 0, 1, 2, δij is the Kronecker delta and r stands for

the residual vector, i.e., r = My = (Invum − P )y. Now to prove (4.16), we consider the following

six cases:

Case 1 : for l = 0, i = j we have

tr
(
M(K

(0)
ii )2

)
= tr

[(
In −

1

n
Jn

)
⊗ Iv ⊗ Iu ⊗A2

ii

]
= tr(A2

ii)tr
(
In −

1

n
Jn

)
tr(Iv)tr(Iu)

= (n− 1)vu

and (My)′K
(0)
ii My = r′(In ⊗ Iv ⊗ Iu ⊗Aii)r

=

n∑
r=1

v∑
t=1

u∑
s=1

r2rtsi.
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Case 2 : for l = 0, i < j we have

tr
(
M(K

(0)
ij )2

)
= tr

[(
In −

1

n
Jn

)
⊗ Iv ⊗ Iu ⊗A2

ij

]
= tr(A2

ij)tr
(
In −

1

n
Jn

)
tr(Iv)tr(Iu)

= 2(n− 1)vu

and (My)′K
(0)
ij My = r′(In ⊗ Iv ⊗ Iu ⊗Aij)r

= 2
n∑

r=1

v∑
t=1

u∑
s=1

rrtsirrtsj , for i < j.

Case 3 : for l = 1, i = j, one gets the estimators by noting the following

tr
(
M(K

(1)
ii )2

)
= tr

[(
In −

1

n
Jn

)
⊗ Iv ⊗ (Ju − Iu)2 ⊗A2

ii

]
= tr(A2

ii)tr
(
In −

1

n
Jn

)
tr(Iv)tr((u− 2)Ju + Iu)

= (n− 1)vu(u− 1)

and (My)′K
(1)
ii My = r′(In ⊗ Iv ⊗ (Ju − Iu)⊗Aii)r

=
n∑

r=1

v∑
t=1

u∑
s=1

u∑
s 6=s∗=1

rrtsirrts∗i.

Case 4 : for l = 1, i < j

tr
(
M(K

(1)
ij )2

)
= tr

[(
In −

1

n
Jn

)
⊗ Iv ⊗ (Ju − Iu)2 ⊗A2

ij

]
= tr(A2

ij)tr
(
In −

1

n
Jn

)
tr(Iv)tr((u− 2)Ju + Iu)

= 2(n− 1)vu(u− 1)

and (My)′K
(1)
ij My = r′(In ⊗ Iv ⊗ (Ju − Iu)⊗Aij)r

= 2
n∑

r=1

v∑
t=1

u∑
s=1

u∑
s 6=s∗=1

rrtsirrts∗j , for i < j.

Case 5 : for i = j we have

tr
(
M(K

(2)
ii )2

)
= tr

[(
In −

1

n
Jn

)
⊗ (Jv − Iv)2 ⊗ J2

u ⊗A2
ii

]
= tr(A2

ii)tr
(
In −

1

n
Jn

)
tr((v − 2)Jv + Iv)tr(uJu)

= (n− 1)v(v − 1)u2

and (My)′K
(2)
ii My = r′(In ⊗ (Jv − Iv)⊗ Ju ⊗Aii)r

=
n∑

r=1

v∑
t=1

v∑
t6=t∗=1

u∑
s=1

u∑
s 6=s∗=1

rrtsirrt∗s∗i.

11



Case 6 : for i < j we have

tr
(
M(K

(2)
ij )2

)
= tr

[(
In −

1

n
Jn

)
⊗ (Jv − Iv)2 ⊗ J2

u ⊗A2
ij

]
= tr(A2

ij)tr
(
In −

1

n
Jn

)
tr((v − 2)Jv + Iv)tr(uJu)

= 2(n− 1)v(v − 1)u2

and (My)′K
(2)
ij My = r′(In ⊗ (Jv − Iv)⊗ Ju ⊗Aij)r

= 2

n∑
r=1

v∑
t=1

v∑
t6=t∗=1

u∑
s=1

u∑
s 6=s∗=1

rrtsirrt∗s∗j , for i < j.

Thus, to find the best quadratic unbiased estimator Γ̃ for Γ, the following normal equation has to

be solved(n− 1)vu 0 0
0 (n− 1)vu(u− 1) 0
0 0 (n− 1)v(v − 1)u2

⊗ I m(m+1)
2

σ(0)

σ(1)

σ(2)

 =

r(0)r(1)

r(2)

. (4.17)

The solution of which isσ(0)

σ(1)

σ(2)

 =




1
(n−1)vu 0 0

0 1
(n−1)vu(u−1) 0

0 0 1
(n−1)v(v−1)u2

⊗ I m(m+1)
2


r(0)r(1)

r(2)

.
Now, the right hand side of the Equation (4.17) can be expressed in terms of C0, C1 and C2 as

defined in (3.5), (3.6) and (3.7) respectively, and then we have(n− 1)vu 0 0
0 (n− 1)vu(u− 1) 0
0 0 (n− 1)v(v − 1)u2

Γ0

Γ1

Γ2

 =

C0

C1

C2

.
Solving this equation we getΓ0

Γ1

Γ2

 =

(n− 1)vu 0 0
0 (n− 1)vu(u− 1) 0
0 0 (n− 1)v(v − 1)u2

−1 C0

C1

C2


=


1

(n−1)vu 0 0

0 1
(n−1)vu(u−1) 0

0 0 1
(n−1)v(v−1)u2


C0

C1

C2

.
Therefore, estimators for Γ0, Γ1 and Γ2 are

Γ̃0 =
1

(n− 1)vu
C0,

Γ̃1 =
1

(n− 1)vu(u− 1)
C1,

Γ̃2 =
1

(n− 1)v(v − 1)u2
C2.

Now using Result 2 we have the following theorem.

12



Theorem 2. Assume that ynvum×1 ∼ N
(
(1n ⊗ Ivum)µ, In ⊗ Γ

)
with DE covariance structure on

Γ, i.e.,

Γ = Iv ⊗ Iu ⊗ (Γ0 − Γ1) + Iv ⊗ Ju ⊗ (Γ1 − Γ2) + Jv ⊗ Ju ⊗ Γ2,

where Γ0 is m × m unknown positive definite and symmetric, Γ1 and Γ2 are m × m unknown

symmetric matrices such that Γ is positive definite. Then

µ̃ = (µ̃′11, . . . , µ̃
′
vu)′ =

1

n

n∑
r=1

yr, (4.18)

where y
nvum×1

= (y′1,y
′
2, . . . ,y

′
n)′ with yr = (y′r,11, . . . ,y

′
r,vu)′ and

Γ̃ = Iv ⊗ Iu ⊗ (Γ̃0 − Γ̃1) + Iv ⊗ Ju ⊗ (Γ̃1 − Γ̃2) + Jv ⊗ Ju ⊗ Γ̃2, (4.19)

where Γ̃0 = 1
(n−1)vuC0, Γ̃1 = 1

(n−1)vu(u−1)C1 and Γ̃2 = 1
(n−1)v(v−1)u2C2 are the best unbiased esti-

mators (BUE) for µ and Γ respectively. Here C0, C1 and C2 are defined in (3.5), (3.6) and (3.7)

respectively.

Proof. Our estimators for µ and Γ are BLUE and BQUE, respectively. Now, because they are

function of complete statistics from Result 2 it follows that they are BUE.

The following theorem states that the estimators presented in Theorem 2 are consistent and

obviously the family of distribution of the above estimators is complete.

Theorem 3. Estimators given in (4.18) and (4.19) are consistent. Moreover, the family of distri-

butions of these estimators is complete.

Proof. Note that the variance of the quadratic forms y′Ay, where y ∼ N(µ,V ), is given by the

following formula

var(y′Ay) = 2tr
{

(AV AV ) + (AV Aµµ′ + µµ′AV A)
}
. (4.20)

In a special case, if A = MAM , and if MV = VM then Aµµ′ = 0, and (4.20) reduces to the

following form

var(y′Ay) = 2tr(MAVAV ). (4.21)

13



Now making an use of (4.21) to the DE covariance structure of the covariance matrix of y and from

(4.13) it follows that for any fixed Γ

var(σ̃
(0)
ij ) = 2tr

{[(
In −

1

n
Jn

)
⊗ Ivum

][ 1

(n− 1)vu
(Invu ⊗Aij)(In ⊗ Γ)

1

(n− 1)vu
(Invu ⊗Aij)(In ⊗ Γ)

]}
=

2

[(n− 1)vu]2
tr
{[(

In −
1

n
Jn

)
⊗ Ivum

][
In ⊗

(
(Ivu ⊗Aij)Γ(Ivu ⊗Aij)Γ

)]}
=

2

[(n− 1)vu]2
tr
{(
In −

1

n
Jn

)
⊗
(

(Ivu ⊗Aij)Γ(Ivu ⊗Aij)Γ
)}

=
2

(n− 1)v2u2
tr
{

(Ivu ⊗Aij)Γ(Ivu ⊗Aij)Γ
}
.

Thus, if n→∞ then

var(σ̃
(0)
ij )→ 0.

Similarly, from (4.14) it follows that for any fixed Γ if n→∞ then

var(σ̃
(1)
ij ) =

2

(n− 1)v2u2(u− 1)2
tr
{

(Iv ⊗ (Ju − Iu)⊗Aij)Γ(Iv ⊗ (Ju − Iu)⊗Aij)Γ
}
→ 0

and from (4.14) it follows that for any fixed Γ if n→∞ then

var(σ̃
(2)
ij ) =

2

(n− 1)v2(v − 1)2u4
tr
{

((Jv − Iv)⊗ Ju ⊗Aij)Γ((Jv − Iv)⊗ Ju ⊗Aij)Γ
}
→ 0.

To finish the proof, note that the estimators for µ and the estimators for elements of covariance

matrix are one-to-one functions of minimal sufficient statistic given by (4.14) and (4.15).

Remark 1. As mentioned in the Introduction for v = 1, the data become doubly multivariate with

BCS covariance structure. Now, for v = 1, the above equations reduces to

var(σ̃
(0)
ij ) =

2

(n− 1)u2
tr
{

(Iu ⊗Aij)Γ(Iu ⊗Aij)Γ
}
,

var(σ̃
(1)
ij ) =

2

(n− 1)u2(u− 1)2
tr
{

((Ju − Iu)⊗Aij)Γ((Ju − Iu)⊗Aij)Γ
}
,

which are exactly same as obtained in Roy et al. (2016) for BCS covariance structure.

We conduct a study to check the behavior of var(σ̃
(0)
ij ), var(σ̃

(1)
ij ) and var(σ̃

(2)
ij ). We consider

the situation where Γ0 = I, an identity matrix, and Γ1 = 0, the matrix of zeros. If Γ0 = I and

Γ1 = Γ2 = 0, then Γ is the identity matrix Γ = I. For the identity matrix Γ the formulas of

variances of estimators for σ(0), σ(1) and σ(2) are:

var(σ̃
(0)
ij ) =

2

(n− 1)vu
,

var(σ̃
(1)
ij ) =

2

(n− 1)vu(u− 1)
, and

var(σ̃
(2)
ij ) =

2

(n− 1)v(v − 1)u2
.
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For graphical presentation we choose maximum value of n = 25, maximum value of u = 10 and the

maximum value of v = 10, which are typical in most real data sets. For each figure, values for n are

chosen from 3 to 25 and for u and v from 2 to 10. For the plot of n and u, v is treated as constant

and v = 2. Similarly, For the plot of n and v, u is treated as constant and u = 2. The Figures 1, 2

and 3 reveal the fact that if n → ∞ then variances of the estimators var(σ̃
(0)
ij ) → 0, var(σ̃

(1)
ij ) → 0

and var(σ̃
(2)
ij )→ 0. In other words it means that our estimators for σ(0), σ(1) and σ(2) are consistent.

Figure 1: (A) Variance var(σ̃
(0)
ij ) for n and u, and (B) Variance var(σ̃

(0)
ij ) for n and v.

Figure 2: (A) Variance var(σ̃
(1)
ij ) for n and u, and (B) Variance var(σ̃

(1)
ij ) for n and v.
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Figure 3: (A) Variance var(σ̃
(2)
ij ) for n and u, and (B) Variance var(σ̃

(2)
ij ) for n and v.

The following section demonstrates our methods with a real data.

5 A real data Example

Results of Section 4 are applied to the Glaucoma data that is described in the Introduction. For

this data set m = 2, u = 2 and v = 3. Using the formula (3.4) presented in Theorem 1, the (2× 1)

dimensional partitioned mean vector for different s = 1, 2, and for different t = 1, 2, 3 are presented

in Table 1.

Table 1 The (2× 1) dimensional partitioned mean vector

t s µ̃ts

1 1 (24.333, 527.367)′

1 2 (23.567, 534.633)′

2 1 (20.233, 525.333)′

2 2 (19.567, 532.500)′

3 1 (19.233, 527.133)′

3 2 (18.933, 534.867)′

Using Theorem 2 we say that the above estimate µ̃ is BLUE for µ. Additionally, using the formulas

(3.8), (3.9) and (3.10) presented in Section 3 the unbiased estimates Γ̃0, Γ̃1 and Γ̃2 are

Γ̃0 =

[
12.230 12.061
12.061 426.155

]
, Γ̃1 =

[
5.826 6.939
6.939 164.156

]
, and Γ̃2 =

[
3.528 9.268
9.268 288.684

]
,
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respectively. Using the above estimates the unbiased estimate of Γ is

Γ̃ = Iv ⊗ Iu ⊗ Γ̃0 + Iv ⊗ (Ju − Iu)⊗ Γ̃1 + (Jv − Iv)⊗ Ju ⊗ Γ̃2 =

[
12.230 12.061
12.061 426.155

]
5.826 6.939
6.939 164.156

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

5.826 6.939
6.939 164.156

[
12.230 12.061
12.061 426.155

]
3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

[
12.230 12.061
12.061 426.155

]
5.826 6.939
6.939 164.156

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

5.826 6.939
6.939 164.156

[
12.230 12.061
12.061 426.155

]
3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

[
12.230 12.061
12.061 426.155

]
5.826 6.939
6.939 164.156

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

3.528 9.268
9.268 288.684

5.826 6.939
6.939 164.156

[
12.230 12.061
12.061 426.155

]



.

Using Theorems 2 and 3 we say that the above estimate Γ̃ is the best unbiased, consistent and

complete estimate of the DE covariance structure Γ.

6 Conclusions

The obtained results in this paper demonstrate the optimality of estimates for both fixed effects and

DE covariance matrices using the coordinate free approach theory for a model with DE covariance

structure. It thus provides a valuable alternative to maximum likelihood estimation, taking as

a base for estimation the algebraic structure of the model. Another significative property is the

unbiasedness of the proposed estimates, a property that maximum likelihood does not, in general,

guarantees or aims at.
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