Selected Ratios and Definitions

(standard definitions; most formulas use the notations from the Berk, DeMarzo, Harford book)
Current Ratio = Current Assets / Current Liabilities;
Quick Ratio = (Current Assets - Inventory) / Current Liabilities;
Debt-to-Asset Ratio = Total Debt $/$ Total Assets; Debt-to-value ratio $=\mathrm{D} /(\mathrm{E}+\mathrm{D})$
Debt-to-Equity = Total Debt / Total Equity;
Equity Multiplier = Total Assets / Total Equity;
Times Interest Earned = EBIT / Interest Payment;
Interest Coverage Ratio = Some Measure of Earnings / Interest;
Inventory Turnover = COGS / Inventory; or, Sales/Average Inventory if COGS data is not available;
Average Age of Inventory = 365 / Inventory Turnover = 365 / (Sales / Inventory);
Receivables Turnover = Annual Sales / Accounts Receivables;
Average Collection Period $=365 /$ Receivables Turnover $=365 /$ (Sales $/$ Accounts Receivables);
Total Assets Turnover = Sales / Total Assets;
Net Profit Margin = Net Income / Sales;
ROA = Net Income / Total Assets = total asset turnover * net profit margin;
$R O E=$ Net Income $/$ Equity $=$ ROA * Equity Multiplier $=$ ROA * Total Assets $/$ Equity;
ROE = total asset turnover * net profit margin * equity multiplier;
$E P S=$ Net Income / Number of Common Shares Outstanding;
P/E Ratio = Market Price per Share / EPS;
Market-to-Book Ratio = Market Price per Share / Book Value per Share
Market-to-Book Ratio = Total Market Value of Equity / Total Book Value of Equity;
Dividend Payout Ratio (DPR) = Dividends / Net Income;
Retention Ratio = 1 - Dividend Payout Ratio;
Net Cash Flow = Net Income + Depreciation;
Operating Cash Flow (OCF) = Earnings before Interest and Taxes + Depreciation - Tax;
Free Cash Flow (FCF) = [EBIT x (1- Tax Rate)] + Depreciation - CAPEX - Change in NWC
Dividend Yield $=$ Dividend per Share $/$ Stock Price $=\operatorname{Div}_{1} / P_{0}$
Capital Gain Rate $=($ Price Next Period $/$ Price today $\left.)-1=\left(P_{1} / P_{0}\right)-1=\left(P_{1}-P_{0}\right) / P_{0}\right)$
Holding Period Return: HPR $=\mathrm{D}_{1} / \mathrm{P}_{0}+\left(\mathrm{P}_{1} / \mathrm{P}_{0}-1\right)$
Value of a perpetuity: $\mathrm{P}=\mathrm{C} / \mathrm{r}$ where C is the perpetual cash flow and r is the discount rate
Constant Growth Model: $P_{0}=\operatorname{Div}_{1} /\left(r_{E}-g\right)$ where Div $_{1}$ is the next period dividend, r_{E} is the equity cost of capital and g is the growth rate in dividend.

Cost of Preferred Stock Capital; $r_{p f d}=\left(\right.$ Div $\left._{p f d} / P_{p f d}\right)$; Cost of Common Equity Capital; $r_{E}=\left(\right.$ Div $\left._{1} / P_{E}\right)+\mathrm{g}$; or Security Market Line, SML or CAPM formula: $r_{i}=r_{R F}+\beta_{i} \times\left(r_{M}-r_{R F}\right) ; E\left(R_{i}\right)=r_{f}+\beta_{i} \cdot\left(\mathrm{E}\left[R_{m k t}\right]-r_{f}\right)$ WACC; $r_{\text {WACC }}=r_{E} E \%+r_{p f d} P \%+r_{D}\left(1-T_{C}\right) D \%$

Single Cash Flow Present Value: PV = C / (1+r) ${ }^{n}$; Single Cash Flow Future Value: $F V_{n}=C$ * $(1+r)^{n}$ Present Value of Annuity: $P V_{0}=C \cdot \frac{1}{r}\left[1-\frac{1}{(1+r)^{N}}\right]$; Future Value of Annuity: $F V_{N}=C \cdot \frac{1}{r}\left[(1+r)^{N}-1\right]$

Calculators

- Allowed; HP 10B, HP 10bii, HP 10BII+, TI BAII, TI BAII Plus, and TI BAll Plus Professional calculators; or any four function calculators
- Not allowed; Graphing or Programmable calculators; iPhones with HP-10B or other emulators

